Q. Consider, $f\left(x\right)=\sqrt{\frac{\pi }{2} - \left(tan\right)^{- 1} \sqrt{\frac{- x^{2}}{\left(x^{2} - 9\right) \left(x - 7\right)^{2} \left(x - 9\right) \left(x - 3\right)}}}$ , $a_{i}$ are the integral values of $x$ for which $f\left(x\right)$ is defined and $a_{i} < a_{i + 1}\forall i=1, \, 2, \, \ldots .8.$ If the matrix $A=\begin{bmatrix} a_{1} & a_{2} & a_{3} \\ a_{4} & a_{5} & a_{6} \\ a_{7} & a_{8} & a_{9} \end{bmatrix}$ and $B^{3}-pB^{2}+qB-rI=0$ , (where $B=adjA$ ), then $\left(2 r + p\right)=$
NTA AbhyasNTA Abhyas 2022
Solution: