Q.
Consider, $f(x)=\begin{cases}\frac{3}{2} \sin ^{-1}\left(\frac{2 x}{1+x^2}\right)+3 \tan ^{-1} x, & x>1 \\ \frac{3 \pi}{2} x, & -1 \leq x \leq 1 \\ \cos ^{-1}\left(\frac{1-x^2}{1+x^2}\right)+2 \tan ^{-1} x-\frac{3 \pi}{2}, & x<-1\end{cases}$
If area enclosed by the graph of $f(x)$ and the $x$-axis from $x=-2$ to $x=2$ is $\left(\frac{p}{q}\right) \pi$, where $p, q \in N$, then find the least value of $|p-q|$.
Inverse Trigonometric Functions
Solution: