Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Consider Bohr's theory for hydrogen atom. The magnitude of angular momentum, orbit radius and frequency of the electron in $n^{\text {th }}$ energy state in a hydrogen atom are $L, r\, \&\, f$ respectively. Find out the value of ' $x$ ', if the product $f r L$ is directly proportional to $n^{x}$ :

Atoms

Solution:

We use
$f r L=\frac{v}{2 \pi r} \times r \times \frac{n h}{2 \pi}=\frac{n h v}{4 \pi^{2}}$
for Bohr's model we have
$v=\frac{k e^{2}}{n h} \times 2 \pi$
$\Rightarrow f r L=\frac{n h}{4 \pi^{2}} \times \frac{k e^{2}}{n h} \times 2 \pi=\frac{k e^{2}}{2 \pi}$
$\Rightarrow f r L=\frac{k e^{2}}{2 \pi}=\frac{k e^{2} n^{0}}{2 \pi}$
$\Rightarrow x=0$