Q. Consider, $\alpha=\sin ^{-1}\left(\frac{2 x}{1+x^2}\right), x \in[-1,1], \beta=\cos ^{-1}\left(\frac{3 \cos y-4 \sin y}{10}\right), y \in[0,2 \pi]$ and $\gamma=2 \tan ^{-1}\left(z^2-4 z+5\right), z \in R$. If $\alpha, \beta$ and $\gamma$ are interior angles of a triangle such that $(\beta+\gamma)$ is minimum then $x+\tan y+z=\frac{a-\sqrt{b}}{c}$ where, $a, b, c \in N$. Find the least value of $(a+b+c)$.
Inverse Trigonometric Functions
Solution: