Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Consider a semi-circular disc of mass $M$ and radius $R$ . The moment of inertia of a uniform semi circular disc about an axis passing through its centre of mass and perpendicular to its plane is,

NTA AbhyasNTA Abhyas 2020

Solution:

$I_{0}=\left(\frac{\left(mR\right)^{2}}{2}\right)$
$I_{0}=I_{c m}+md^{2}$
$\frac{m R^{2}}{2}=I_{c m}+m\left(\frac{4 R}{3 \pi }\right)^{2}$
$\Rightarrow I_{c m}=\frac{m R^{2}}{2}-m\left(\frac{4 R}{3 \pi }\right)^{2}$
$I_{c n}=\left[\frac{M R^{2}}{2} - M \left(\frac{4 R}{3 \pi }\right)^{2}\right]$
Solution