Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Consider a rational function $f(x)=\frac{x^{2}-3 x-4}{x^{2}-3 x+4}$ and a quadratic function $g(x)=x^{2}-(b+1) x+b-1$, where $b$ is a parameter.
If both roots of the equation $g ( x )=0$ are greater than $-1$, then b lies in the interval.

Complex Numbers and Quadratic Equations

Solution:

Different possibilities are as follows :
image
If both roots of $g ( x )=0$ are greater than $-1$, then 3 conditions should be satisfied simultaneously.
(1) $D \geq 0$
(2) $\frac{-B}{2 A}>-1$
(3) $g (-1)>0$
Now, $(1) \Rightarrow (b+1)^{2}-4(b-1) \geq 0$
$ \Rightarrow b^{2}-2 b+5 \geq 0 \forall b \in R $
$(2) \Rightarrow \frac{b+1}{2}>-1 \Rightarrow b>-3$
and $(3) \Rightarrow 1+(b+1)+(b-1)>0$
$ \Rightarrow b>-\frac{1}{2}$
hence from $(1) \cap(2) \cap(3)$, we get
$b \in\left(\frac{-1}{2}, \infty\right)$