Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Consider a polynomial $f(x)=x^3+2 x^2+x+1$. Let $P$ and $Q$ denote the point of local maxima and local minima respectively and $O$ is origin, then which of the following statement(s) is/are CORRECT?

Application of Derivatives

Solution:

image
$f(x)=1+x(x+1)^2 $
$f^{\prime}(x)=3 x^2+4 x+1=(3 x+1)(x+1)$
$f(-1)=1, f\left(-\frac{1}{3}\right)=1-\frac{1}{3} \cdot \frac{4}{9}=1-\frac{4}{27}=\frac{23}{27} $
$\text { Point } P(-1,1) $
$\text { Point } Q\left(-\frac{1}{3}, \frac{23}{27}\right)$
$m_{O P}=-1, m_{O Q}=-\frac{23}{9}$
$\tan \theta=\frac{7}{16} .$