Q. Consider a parabola $y =\frac{ x ^2}{4}$ and the point $F (0,1)$. Let $A_1\left(x_1, y_1\right), A_2\left(x_2, y_2\right), A_3\left(x_3, y_3\right), \ldots \ldots ., A_n\left(x_n, y_n\right)$ are ' $n$ ' points on the parabola such $x _{ k }>0$ and $\angle OFA _{ k }=\frac{ k \pi}{2 n }( k =1,2,3, \ldots, n )$. Then the value of $\underset{ n \rightarrow \infty}{\text{Lim}} \frac{1}{ n } \displaystyle\sum_{ k =1}^{ n } FA _{ k }$, is equal to
Integrals
Solution: