Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Consider a parabola $y^2=2 x-11$ and a point $P(6 \cos \theta, 6 \sin \theta), \theta \in(0,2 \pi)$. Let pair of tangents be drawn to the parabola from the point $P$.
If the corresponding chord of contact is focal chord of the parabola then possible value of ( $\sin \theta$ $+\cos \theta)$ is (are)

Conic Sections

Solution:

Equation of chord of contact $6 \sin \theta y=6 \cos \theta+x-11$
Focus $=(6,0)$
$0=6 \cos \theta+6-11 \Rightarrow \cos \theta=\frac{5}{6} $
$\Rightarrow \sin \theta+\cos \theta=\frac{5 \pm \sqrt{11}}{6}$