Q.
Consider a parabola $y^2=2 x-11$ and a point $P(6 \cos \theta, 6 \sin \theta), \theta \in(0,2 \pi)$. Let pair of tangents be drawn to the parabola from the point $P$.
If the corresponding chord of contact is focal chord of the parabola then possible value of ( $\sin \theta$ $+\cos \theta)$ is (are)
Conic Sections
Solution: