Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Consider a function $f$ defined by $f(x)=\sin ^{-1}\left(\frac{2 \tan \frac{x}{2}}{1+\tan ^2 \frac{x}{2}}\right)$ then

Inverse Trigonometric Functions

Solution:

$f ( x )=\sin ^{-1}(\sin x ), x \neq(2 n +1) \pi$
$\Rightarrow f(x)$ and $y=\sin ^{-1}(\sin x)$ are not identical
image
Range of $f ( x )=\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ and period $=2 \pi$