Q. Consider a complex number $z$ on the argand plane satisfying $\arg \left(z^2-\omega^2\right)=\frac{\pi}{2}+\arg \left(z^2-\omega\right)$ (where $\omega= e ^{\frac{ i 2 \pi}{3}}$ ). If minimum value of $| z -2-2 i || z +2+2 i |$ is $\left(\frac{\sqrt{ a }-\sqrt{ b }}{2}\right)( a , b \in N )$ then find the value of $\left(\frac{ a + b }{52}\right)$.
Complex Numbers and Quadratic Equations
Solution: