Thank you for reporting, we will resolve it shortly
Q.
Complex number z = i−1cos(π/3)+isin(π/3) in polar form is
AMUAMU 2010Complex Numbers and Quadratic Equations
Solution:
z=i−1cos(π3)+isin(π3) =i−1(1+i√32)=2(i−1)(1−i√3)(1−i2⋅3) =24(i−1−i2√3+i√3) =12(√3−1+i√3+i) =(√3−1)2+i(√3+1)2…(i)
Let rcosθ=√3−12…(ii) rsinθ=√3+12…(iii)
On squaring and adding Eqs. (ii) and (iii) r2=14{3+1−2√3+3+1+2√3} r2=2 ⇒r=√2
From on dividing Eq. (iii) from Eq. (ii) tanθ=√3+1√3−1×√3+1√3+1 tanθ=(√3+1)23−1=3+1+2√32 tanθ=2+√3 θ=7π12
Principal value of θ=π−7π12 =5π12
Hence, the polar form is r=√2(cos5π12+isin5π12)