Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Column I contains functions and column II contains their natural domains. Exactly one entry of column II matches with exactly one entry of column I.
Column I Column II
A $ f ( x )=\sin ^{-1}\left(\frac{ x +1}{ x }\right)$ P $(1,3) \cup(3, \infty)$
B $ g ( x )=\sqrt{\ln \left(\frac{ x ^2+3 x -2}{ x +1}\right)}$ Q $(-\infty, 2)$
C $h ( x )=\frac{1}{\ln \left(\frac{ x -1}{2}\right)}$ R $\left(-\infty,-\frac{1}{2}\right]$
D $ \phi( x )=\ln \left(\sqrt{ x ^2+12}-2 x \right)$ S $[-3,-1) \cup[1, \infty)$

Relations and Functions - Part 2

Solution:

(A)$f(x)=\sin ^{-1}\left(\frac{x+1}{x}\right) ; -1 \leq \frac{x+1}{x} \leq 1 $
$\therefore \frac{x+1}{x}-1 \leq 0 ; \frac{1}{x} \leq 0 \Rightarrow x<0 $
$\text { and } 0 \leq 1+\frac{x+1}{x} ; 0 \leq \frac{2 x+1}{x} \Rightarrow \frac{2 x+1}{x} \geq 0$
image
Hence domain of $f(x)$ is $\left(-\infty,-\frac{1}{2}\right]$
(B)$\ln \frac{x^2+3 x-2}{x+1} \geq 0 ; \frac{x^2+3 x-2}{x+1} \geq 1 ; \frac{x^2+3 x-2-x-1}{x+1} \geq 0 ; \frac{x^2+2 x-3}{x+1} \geq 0$
$\frac{( x +3)( x -1)}{ x +1} \geq 0$
image
hence $\Rightarrow$ (S)
(C)$\ln \left(\frac{ x -1}{2}\right) \neq 0 \Rightarrow \frac{ x -1}{2} \neq 1 \Rightarrow x \neq 3$
also $\frac{x-1}{2}>0 \Rightarrow x>1$
$(1, \infty)-\{3\} \Rightarrow$
(D) for $x \leq 0, \sqrt{ x ^2+12}>2 x$ always true
$\text { for } x>0 x^2+12>4 x^2 $
$ 0>3 x^2-12 \Rightarrow x^2-4<0$
$\therefore x \in(0,2) \Rightarrow \operatorname{domain}(-\infty, 2) \Rightarrow \text { (Q) ] }$