Q.
Column I
Column II
A
When the repeating decimal 0.363636 . is written as a rational fraction in the simplest form, the sum of the numerator and denominator is
P
4
B
Given positive integer $p, q$ and $r$ with $p=3^q \cdot 2^r$ and $100
Q
8
C
If $\log _8 a+\log _8 b=\left(\log _8 a\right)\left(\log _8 b\right)$ and $\log _a b=3$, then the value of ' $a$ ' is
R
15
D
Let $N =(2+1)\left(2^2+1\right)\left(2^4+1\right) \ldots \ldots\left(2^{32}+1\right)+1$ then $\log _{256} N$ equals
S
16
Column I | Column II | ||
---|---|---|---|
A | When the repeating decimal 0.363636 . is written as a rational fraction in the simplest form, the sum of the numerator and denominator is | P | 4 |
B | Given positive integer $p, q$ and $r$ with $p=3^q \cdot 2^r$ and $100
| Q | 8 |
C | If $\log _8 a+\log _8 b=\left(\log _8 a\right)\left(\log _8 b\right)$ and $\log _a b=3$, then the value of ' $a$ ' is | R | 15 |
D | Let $N =(2+1)\left(2^2+1\right)\left(2^4+1\right) \ldots \ldots\left(2^{32}+1\right)+1$ then $\log _{256} N$ equals | S | 16 |
Continuity and Differentiability
Solution: