Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q.
Column I Column II
A The value of $2^{\log _3 5}-5^{\log _3 2}+3^{\log _2 7}-7^{\log _2 3}+6^{\log _6 11}-4^{\log _2 3}$ is equal to P 0
B The value of $\tan 225^{\circ} \cot 405^{\circ}+\tan 765^{\circ} \cot 675^{\circ}$ is equal to Q 1
C The number $N =\frac{\log _5 250}{\log _{50} 5}-\frac{\log _5 10}{\log _{1250} 5}$, when simplified reduces to a natural number, then $N$ equals R 2
D The value of $\log _{10}\left(\frac{1}{1+ x ^{ m - n }+ x ^{ p - n }}+\frac{1}{1+ x ^{ n - p }+ x ^{ m - p }}+\frac{1}{1+ x ^{ p - m }+ x ^{ n - m }}\right)$ is equal to S 3
T 4

Continuity and Differentiability

Solution:

(A) $ 5^{\log _3 2}-5^{\log _3 2}+3^{\log _2 7}-3^{\log _2 7}+11-2^{2 \log _2 3}=11-2^{\log _2 3^2}=11-9=2$
(B) $ \tan \left(180^{\circ}+45^{\circ}\right) \cot \left(360^{\circ}+45^{\circ}\right)+\tan \left(720^{\circ}+45^{\circ}\right) \cot \left(720^{\circ}-^{\circ}\right)$ $=\tan 45^{\circ} \cot 45^{\circ}+\tan 45^{\circ}\left(\cot 45^{\circ}\right)=0$ Ans.
(C)$N =\frac{\log _5 250}{\log _{50} 5}-\frac{\log _5 10}{\log _{1250} 5}, \\
N =\left(3+\log _5 2\right)^2 \cdot\left(2+\log _5 2\right)-\left(1+\log _5 2\right)\left(4+\log _5 2\right) $
$\left. N =\left(\log _5 2\right)^2+5 \log _5 2+6-\left[\left(\log _5 2\right)^2+5 \log _5 2+4\right)\right]$
$N =6-4=2$