Q.
Column I
Column II
A
The value of $2^{\log _3 5}-5^{\log _3 2}+3^{\log _2 7}-7^{\log _2 3}+6^{\log _6 11}-4^{\log _2 3}$ is equal to
P
0
B
The value of $\tan 225^{\circ} \cot 405^{\circ}+\tan 765^{\circ} \cot 675^{\circ}$ is equal to
Q
1
C
The number $N =\frac{\log _5 250}{\log _{50} 5}-\frac{\log _5 10}{\log _{1250} 5}$, when simplified reduces to a natural number, then $N$ equals
R
2
D
The value of $\log _{10}\left(\frac{1}{1+ x ^{ m - n }+ x ^{ p - n }}+\frac{1}{1+ x ^{ n - p }+ x ^{ m - p }}+\frac{1}{1+ x ^{ p - m }+ x ^{ n - m }}\right)$ is equal to
S
3
T
4
Column I | Column II | ||
---|---|---|---|
A | The value of $2^{\log _3 5}-5^{\log _3 2}+3^{\log _2 7}-7^{\log _2 3}+6^{\log _6 11}-4^{\log _2 3}$ is equal to | P | 0 |
B | The value of $\tan 225^{\circ} \cot 405^{\circ}+\tan 765^{\circ} \cot 675^{\circ}$ is equal to | Q | 1 |
C | The number $N =\frac{\log _5 250}{\log _{50} 5}-\frac{\log _5 10}{\log _{1250} 5}$, when simplified reduces to a natural number, then $N$ equals | R | 2 |
D | The value of $\log _{10}\left(\frac{1}{1+ x ^{ m - n }+ x ^{ p - n }}+\frac{1}{1+ x ^{ n - p }+ x ^{ m - p }}+\frac{1}{1+ x ^{ p - m }+ x ^{ n - m }}\right)$ is equal to | S | 3 |
T | 4 |
Continuity and Differentiability
Solution: