Q.
Column I
Column II
A
Let $x$ be a real number satisfying $x^2+\frac{1}{x^2}=23$ and $\log _5\left(x^3+\frac{1}{x^3}\right)$ lies between two consecutive natural numbers $a \& b$ then $a + b$ is equal to
P
3
B
If $\log _{ e } x +\log _{ x } e =3$ then $\left(\ln ^2 x +\ln _{ x }^2 e \right)$ is
Q
5
C
A rational number which is 50 times its own logarithm to the base 10 , is
R
7
D
If the positive numbers $x, y \& z$ satisfy $x y z=1000 $ $\log _{10} x \log _{10} y+\log _{10} x y \log _{10} z=1$ and $\log _{ x } 10+\log _{ y } 10+\log _{ z } 10=\frac{1}{3}$ then the value of $\sqrt[3]{\left(\log _{10} x \right)^3+\left(\log _{10} y \right)^3+\left(\log _{10} z \right)^3}$, is
S
50
T
100
Column I | Column II | ||
---|---|---|---|
A | Let $x$ be a real number satisfying $x^2+\frac{1}{x^2}=23$ and $\log _5\left(x^3+\frac{1}{x^3}\right)$ lies between two consecutive natural numbers $a \& b$ then $a + b$ is equal to | P | 3 |
B | If $\log _{ e } x +\log _{ x } e =3$ then $\left(\ln ^2 x +\ln _{ x }^2 e \right)$ is | Q | 5 |
C | A rational number which is 50 times its own logarithm to the base 10 , is | R | 7 |
D | If the positive numbers $x, y \& z$ satisfy $x y z=1000 $ $\log _{10} x \log _{10} y+\log _{10} x y \log _{10} z=1$ and $\log _{ x } 10+\log _{ y } 10+\log _{ z } 10=\frac{1}{3}$ then the value of $\sqrt[3]{\left(\log _{10} x \right)^3+\left(\log _{10} y \right)^3+\left(\log _{10} z \right)^3}$, is | S | 50 |
T | 100 |
Continuity and Differentiability
Solution: