Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q.
Column I Column II
A Let w be a non real cube root of unity then the number of distinct elements in the set $\left\{\left(1+ w + w ^2+\ldots \ldots+ w ^{ n }\right)^{ m } \mid m , n \in N \right\}$ is P 4
B Let $1, w , w ^2$ be the cube root of unity. The least possible degree of a polynomial with real coefficients having roots $2 w,(2+3 w),\left(2+3 w^2\right),\left(2-w-w^2\right)$, is Q 5
C $\alpha=6+4 i$ and $\beta=(2+4 i )$ are two complex numbers on the complex plane. A complex number z satisfying amp $\left(\frac{z-\alpha}{z-\beta}\right)=\frac{\pi}{6}$ moves on the major segment of a circle whose radius is R 6
S 7

Complex Numbers and Quadratic Equations

Solution:

(A)image
$\left(- w ^2\right)^{ m } \in\left\{-1, w , w ^2,- w ^2\right\}$ depending upon the value of $m$.
$\Rightarrow $ answer is $6 ;\left\{0,1,-1, w ,- w ^2, w ^2\right\} \Rightarrow$(R)
(B) $\alpha_1=2 w ; \alpha_2=2 w ^2 \text { (conjugate roots) } $
$\beta_1=2+3 w^2 ; \beta_2=2+3 w^2 \text { (conjugate roots) }$
$\gamma_1=2+3 w^2 ; \gamma_2=2+3 w$
$\delta_1=3$
$\Rightarrow \text { Roots are } 2 w ; 2 w^2 ; 2+3 w ; 2+3 w^2 ; 3 \Rightarrow (Q)$
(C) image
Refer to the figure
$\sin 30^{\circ}=\cos 60^{\circ}=\frac{2}{R} $
$\Rightarrow R=4 \text { Ans. } \Rightarrow (P)$
$\therefore \operatorname{Im}(z)=0$