Q.
Column I
Column II
A
Let $f : R \rightarrow R$ defined as $f(x)=e^{\operatorname{sgn} x}+e^{x^2}$, where $\operatorname{sgn} x$ denotes signum function of $x$, then $f(x)$ is
P
Odd
B
Let $f :(-1,1) \rightarrow R$ defined as$f(x)=x\left[x^4\right]+\frac{1}{\sqrt{1-x^2}}$where $[x]$ denotes greatest integer less than or equal to $x$, then $f(x)$ is
Q
Even
C
Let $f : R \rightarrow R$ defined as$f(x)=\frac{x(x+1)\left(x^4+1\right)+2 x^4+x^2+2}{x^2+x+1}$then $f(x)$ is
R
Neither odd nor even
D
Let $f : R \rightarrow R$ defined as$f ( x )= x +3 x ^3+5 x ^5+\ldots \ldots .+101 x ^{101}$then $f(x)$ is
S
One-One
T
Many-One
Column I | Column II | ||
---|---|---|---|
A | Let $f : R \rightarrow R$ defined as $f(x)=e^{\operatorname{sgn} x}+e^{x^2}$, where $\operatorname{sgn} x$ denotes signum function of $x$, then $f(x)$ is | P | Odd |
B | Let $f :(-1,1) \rightarrow R$ defined as$f(x)=x\left[x^4\right]+\frac{1}{\sqrt{1-x^2}}$where $[x]$ denotes greatest integer less than or equal to $x$, then $f(x)$ is | Q | Even |
C | Let $f : R \rightarrow R$ defined as$f(x)=\frac{x(x+1)\left(x^4+1\right)+2 x^4+x^2+2}{x^2+x+1}$then $f(x)$ is | R | Neither odd nor even |
D | Let $f : R \rightarrow R$ defined as$f ( x )= x +3 x ^3+5 x ^5+\ldots \ldots .+101 x ^{101}$then $f(x)$ is | S | One-One |
T | Many-One |
Relations and Functions - Part 2
Solution: