Q.
Column I
Column II
A
If $x_1$ and $x_2$ satisfy the equation $x^{\log _{10} x}=100 x$ then the value of $x_1 x_2$ equals
P
irrational
B
Sum of the squares of the roots of the equation $\log _2\left(9-2^x\right)=3-x$ is
Q
rational
C
If $\log _{1 / 8}\left(\log _{1 / 4}\left(\log _{1 / 2} x\right)\right)=\frac{1}{3}$ then $x$ is
R
prime
S
composite
Column I | Column II | ||
---|---|---|---|
A | If $x_1$ and $x_2$ satisfy the equation $x^{\log _{10} x}=100 x$ then the value of $x_1 x_2$ equals | P | irrational |
B | Sum of the squares of the roots of the equation $\log _2\left(9-2^x\right)=3-x$ is | Q | rational |
C | If $\log _{1 / 8}\left(\log _{1 / 4}\left(\log _{1 / 2} x\right)\right)=\frac{1}{3}$ then $x$ is | R | prime |
S | composite |
Continuity and Differentiability
Solution: