Q.
Column I
Column II
A
If the determinant $\begin{vmatrix}a + p & \ell+ x & u + f \\ b + q & m + y & v + g \\ c + r & n + z & w + h \end{vmatrix}$ splits into exactly $K$ determinants of order 3 , each element of which contains only one term, then the values of $K$ is
p
3
B
The values of $\lambda$ for which the system of equations
$x+y+z=6$
$x+2 y+3 z=10$
$\& x+2 y+\lambda z=12$
is inconsistent
q
8
C
If $x , y , z$ are in A.P. then the value of the determinant $\begin{vmatrix} a +2 & a +3 & a +2 x \\ a +3 & a +4 & a +2 y \\ a +4 & a +5 & a +2 z \end{vmatrix}$ is
r
5
D
Let $p$ be the sum of all possible determinants of order 2 having $0,1,2$ \& 3 as their four elements (without repeatition of digits). The value of ' $p$ ' is
s
0
Column I | Column II | ||
---|---|---|---|
A | If the determinant $\begin{vmatrix}a + p & \ell+ x & u + f \\ b + q & m + y & v + g \\ c + r & n + z & w + h \end{vmatrix}$ splits into exactly $K$ determinants of order 3 , each element of which contains only one term, then the values of $K$ is | p | 3 |
B | The values of $\lambda$ for which the system of equations $x+y+z=6$ $x+2 y+3 z=10$ $\& x+2 y+\lambda z=12$ is inconsistent |
q | 8 |
C | If $x , y , z$ are in A.P. then the value of the determinant $\begin{vmatrix} a +2 & a +3 & a +2 x \\ a +3 & a +4 & a +2 y \\ a +4 & a +5 & a +2 z \end{vmatrix}$ is | r | 5 |
D | Let $p$ be the sum of all possible determinants of order 2 having $0,1,2$ \& 3 as their four elements (without repeatition of digits). The value of ' $p$ ' is | s | 0 |
Determinants
Solution: