Q.
Column I
Column II
A
If $a, b, c$ are in G.P. and $a^x=b^y=c^z$ then $x, y, z$ are in
P
A.P
B
If $a \left(\frac{1}{ b }+\frac{1}{ c }\right), b \left(\frac{1}{ c }+\frac{1}{ a }\right), c \left(\frac{1}{ a }+\frac{1}{ b }\right)$ are 3 distinct terms of an A.P. then a, b, c are in
Q
G.P
C
If $a , b , c , d$ and $p$ are different real numbers such that $\left(a^2+b^2+c^2\right) p^2-2(a b+b c+c d) p+\left(b^2+c^2+d^2\right) \leq 0$ then $a , b , c , d$ are in
R
H.P
D
S
Not in A.P. / G.P. / H.P.
Column I | Column II | ||
---|---|---|---|
A | If $a, b, c$ are in G.P. and $a^x=b^y=c^z$ then $x, y, z$ are in | P | A.P |
B | If $a \left(\frac{1}{ b }+\frac{1}{ c }\right), b \left(\frac{1}{ c }+\frac{1}{ a }\right), c \left(\frac{1}{ a }+\frac{1}{ b }\right)$ are 3 distinct terms of an A.P. then a, b, c are in | Q | G.P |
C | If $a , b , c , d$ and $p$ are different real numbers such that $\left(a^2+b^2+c^2\right) p^2-2(a b+b c+c d) p+\left(b^2+c^2+d^2\right) \leq 0$ then $a , b , c , d$ are in | R | H.P |
D | S | Not in A.P. / G.P. / H.P. |
Sequences and Series
Solution: