Q.
Column I
Column II
A
If $4^x-3^{x-\frac{1}{2}}=3^{x+\frac{1}{2}}-2^{2 x-1}$ then $2 x$ equals
P
1
B
The number of solutions of $\log _7 \log _5(\sqrt{x+5}+\sqrt{x})=0$ is
Q
2
C
The number of values of $x$ such that the middle term of $\log _3 2, \log _3\left(2^x-5\right), \log _3\left(2^x-\frac{7}{2}\right)$ is the average of the other two is
R
3
D
If $\alpha, \beta$ are the roots of the equation $x^2-\left(3+2^{\sqrt{\log _2 3}}-3^{\sqrt{\log _3 2}}\right) x-2\left(3^{\log _3 2}-2^{\log _2 3}\right)=0$ then $2(\alpha+\beta)-\alpha \beta$ equals
S
4
Column I | Column II | ||
---|---|---|---|
A | If $4^x-3^{x-\frac{1}{2}}=3^{x+\frac{1}{2}}-2^{2 x-1}$ then $2 x$ equals | P | 1 |
B | The number of solutions of $\log _7 \log _5(\sqrt{x+5}+\sqrt{x})=0$ is | Q | 2 |
C | The number of values of $x$ such that the middle term of $\log _3 2, \log _3\left(2^x-5\right), \log _3\left(2^x-\frac{7}{2}\right)$ is the average of the other two is | R | 3 |
D | If $\alpha, \beta$ are the roots of the equation $x^2-\left(3+2^{\sqrt{\log _2 3}}-3^{\sqrt{\log _3 2}}\right) x-2\left(3^{\log _3 2}-2^{\log _2 3}\right)=0$ then $2(\alpha+\beta)-\alpha \beta$ equals | S | 4 |
Continuity and Differentiability
Solution: