Q.
Column I
Column II
A
If $2 \log \left(\frac{8}{45}\right)+3 \log \left(\frac{25}{8}\right)-4 \log \left(\frac{5}{6}\right)=\log K$, then the value of $K$ is equal to
P
$\frac{1}{4}$
B
The rational number represented by $\log _{10}(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}})$, is equal to
Q
$\frac{1}{2}$
C
The digit in the unit's place of the number $17^{1999}+11^{1999}-7^{1999}$, is equal to
R
1
T
2
Column I | Column II | ||
---|---|---|---|
A | If $2 \log \left(\frac{8}{45}\right)+3 \log \left(\frac{25}{8}\right)-4 \log \left(\frac{5}{6}\right)=\log K$, then the value of $K$ is equal to | P | $\frac{1}{4}$ |
B | The rational number represented by $\log _{10}(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}})$, is equal to | Q | $\frac{1}{2}$ |
C | The digit in the unit's place of the number $17^{1999}+11^{1999}-7^{1999}$, is equal to | R | 1 |
T | 2 |
Continuity and Differentiability
Solution: