Q.
Column I
Column II
A
$f(x)=\cos \left(\frac{\pi}{\sqrt{3}} \sin x+\sqrt{\frac{2}{3}} \pi \cos x\right)$
P
Domain of $f( x )$ is $(-\infty, \infty)$
B
$f ( x )=\log _2(|\sin x |+1)$
Q
Range of $f( x )$ contains only one positive integer
C
$f ( x )=\cos \{[ x ]+[- x ]\}$
R
$ f( x )$ is many-one function
D
$f ( x )=\left[\left\{\left| e ^{ x }\right|\right\}\right]$
S
$ f( x )$ is constant function
where $[ x ]$ and $\{ x \}$ denotes greatest integer and fractional part function.
Column I | Column II | ||
---|---|---|---|
A | $f(x)=\cos \left(\frac{\pi}{\sqrt{3}} \sin x+\sqrt{\frac{2}{3}} \pi \cos x\right)$ | P | Domain of $f( x )$ is $(-\infty, \infty)$ |
B | $f ( x )=\log _2(|\sin x |+1)$ | Q | Range of $f( x )$ contains only one positive integer |
C | $f ( x )=\cos \{[ x ]+[- x ]\}$ | R | $ f( x )$ is many-one function |
D | $f ( x )=\left[\left\{\left| e ^{ x }\right|\right\}\right]$ | S | $ f( x )$ is constant function |
Relations and Functions - Part 2
Solution: