Q.
Column I
Column II
A
$ 3 \log 4+2 \log 5-\frac{1}{3} \log 64-\frac{1}{2} \log 16 $where base of the logarithm is 10 , equals
P
1
B
$ 2^{\log 3-\log 5} \cdot 3^{\log 5-\log 2} \cdot 5^{\log 2-\log 3} $ where base of the logarithm is 10 , equals
Q
2
C
$\text { Natural solution of the equation } \sqrt{7^{2 x^2-5 x-6}}=(\sqrt{2})^{3 \log _2 49} \text { equals }$
R
3
D
If $\log _{12} 27=a$ and $\log _6 16=K\left(\frac{3-a}{3+a}\right)$, then $K$ equals
S
4
T
5
Column I | Column II | ||
---|---|---|---|
A | $ 3 \log 4+2 \log 5-\frac{1}{3} \log 64-\frac{1}{2} \log 16 $where base of the logarithm is 10 , equals | P | 1 |
B | $ 2^{\log 3-\log 5} \cdot 3^{\log 5-\log 2} \cdot 5^{\log 2-\log 3} $ where base of the logarithm is 10 , equals | Q | 2 |
C | $\text { Natural solution of the equation } \sqrt{7^{2 x^2-5 x-6}}=(\sqrt{2})^{3 \log _2 49} \text { equals }$ | R | 3 |
D | If $\log _{12} 27=a$ and $\log _6 16=K\left(\frac{3-a}{3+a}\right)$, then $K$ equals | S | 4 |
T | 5 |
Continuity and Differentiability
Solution: