Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Coefficient of $x^{n-1}$ in the expansion of, $(x+3)^n+(x+3)^{n-1}(x+2)+(x+3)^{n-2}(x+2)^2+\ldots . .+(x+2)^n$ is :

Binomial Theorem

Solution:

$(x+3)^n+(x+3)^{n-1}(x+2)+\ldots \ldots .+(x+2)^n=(x+3)^n\left(\frac{1-\left(\frac{x+2}{x+3}\right)^{n+1}}{1-\frac{x+2}{x+3}}\right)$
$=\left[(x+3)^{n+1}-(x+2)^{n+1}\right]$
Coefficient of $x^{n-1}={ }^{n+1} C_{n-1}(3)^2-{ }^{n+1} C_{n-1} \times 4$