Q.
Chords of the parabola $y^2=4 x$ are tangent to the hyperbola $x^2-y^2=1$. The locus of the point of intersection of tangents of parabola drawn at extremities of such chords is an ellipse $E$.
The equation of common tangent(s) to hyperbola $x^2-y^2=1$ and ellipse $E$ can be
Conic Sections
Solution: