Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Chords of an ellipse are drawn through the positive end of the minor axis. Their midpoint lies on

WBJEEWBJEE 2022

Solution:

image
$ \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 $
$ \frac{x_1+0}{2}=h \quad \frac{y_1+b}{2}=k $
$ \Rightarrow x_1=2 h \Rightarrow y_1=2 k-b $
$ \frac{x_1^2}{a^2}+\frac{y_1^2}{b^2}=1 \Rightarrow \frac{4 h^2}{a^2}+\frac{(2 k-b)^2}{b^2}=1 $
$\Rightarrow \frac{h^2}{a^2 / 4}+\frac{\left(k-\frac{b}{2}\right)^2}{b^2 / 4}=1 $
$ \therefore \frac{x^2}{a^2 / 4}+\frac{\left(y-\frac{b}{2}\right)^2}{b^2 / 4}=1$
$ \rightarrow \text { Locus of midpoint which is an ellipse }$