Dimensional formula of work,
$[W]=[F] \times[s]$
$=\left[M L T^{-2}\right][L]=\left[M L^{2} T^{-2}\right]$
Similarly, dimensional formulae of
Angular momentum $[L]=[m][v][r]=[M]\left[L T^{-1}\right][L]$
$=\left[M L^{2} T^{-1}\right]$
Torque $[\tau]=[F] \times[r]$
$=\left[M L T^{-2}\right][L]=\left[M L^{2} T^{-2}\right]$
Potential energy $[U]=[m][g][h]$
$=[M]\left[L T^{-2}\right][L]$
$=\left[M L^{2} T^{-2}\right]$
Linear momentum $[p]=[m][v]=[M]\left[L T^{-1}\right]$
$=\left[M L T^{-1}\right]$
Kinetic energy $[K]=\frac{1}{2}[m]\left[v^{2}\right]$
$=[M]\left[L T^{-1}\right]^{2}=\left[M L^{2} T^{-2}\right]$
Velocity $[v]=\left[L T^{-1}\right]$
Clearly, dimensional formulae of work and torque are same