Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Calculate variance for the following distribution.
Class 30-40 40-50 50-60 60-70 70-80 80-90 90-100
Frequency 3 7 12 15 8 3 2

Statistics

Solution:

Let the assumed mean $A=65 .$ Here, $h=10$.
We obtain the following table from the given data.
Class Fre quency $f_{i}$ Mid -point $x_{i}$ $y_{i}=\frac{x_{i}-65}{10}$ $y_{i}^{2}$ $f_{i}y_{i}$ $f_{i} y_{i}^{2}$
30-40 3 35 -3 9 -9 27
40-50 7 45 -2 4 -14 28
50-60 12 55 -1 1 -12 12
60-70 15 65 0 0 0 0
70-80 8 75 1 1 8 8
80-90 3 85 2 4 6 12
90-100 2 95 3 9 6 18
total N=50 -15 105

Therefore $\bar{x}=A+\frac{\sum f_{i} y_{i}}{50} \times h=65-\frac{15}{50} \times 10=62$
Variance $\sigma^{2}=\frac{h^{2}}{N^{2}}\left[N \Sigma f_{i} y_{i}^{2}-\left(\Sigma f_{i} y_{i}\right)^{2}\right]$
$=\frac{(10)^{2}}{(50)^{2}}\left[50 \times 105-(-15)^{2}\right]$
$=\frac{1}{25}[5250-225]=201$