Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Calculate the ratio of the speed of sound in neon to that in water vapour at any temperature. Given that the molecular weight of neon gas $=2.02\times 10^{- 2} \, kg \, mole^{- 1}$ and molecular weight of water vapour $=1.8\times 10^{- 2} \, kg \, mole^{- 1}$ . $\gamma _{\text{neon}}=\frac{5}{3}$ and $\gamma $ for water vapour $=\frac{4}{3}$ .

NTA AbhyasNTA Abhyas 2022

Solution:

Let v1 and v2 be the speeds of sound in neon and water vapour respectively. Suppose that M1 and M2 are the molecular weights of neon and water vapour respectively. If γ is the ratio of the two specific heats, then
$\frac{\upsilon_{1}}{\upsilon_{2}} = \sqrt{\frac{\text{RT } \gamma _{\text{neon}}}{\text{M}_{1}}} \times \sqrt{\frac{\text{M}_{2}}{\text{RT } \gamma _{\text{water vapour}}}} = \sqrt{\frac{\text{M}_{2}}{\text{M}_{1}}} \times \sqrt{\frac{\gamma _{\text{neon}}}{\gamma _{\text{water vapour}}}}$
Here, $M_{1}=2.02\times 10^{- 2}kgmole^{- 1}$ ;
$M_{2}=1.8\times 10^{- 2}kgmole^{- 1}$
$\therefore \frac{\upsilon_{1}}{\upsilon_{2}} = \sqrt{\frac{1 \cdot 8 \times 1 0^{- 2} \times 5 / 3}{2 \cdot 0 2 \times 1 0^{- 2} \times 4 / 3}} = 1 \text{.} 1$