Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Calculate the ratio of the capacitance of two capacitors filled with dielectrics of the same dimensions but of different values $K$ and $K/4$ arranged in two ways as shown in figure (i) and (ii)
Question

NTA AbhyasNTA Abhyas 2022

Solution:

Here, $C_{1}=\frac{\epsilon _{0} K_{1} A}{2 d}+\frac{\epsilon _{0} K_{2} A}{2 d}$
$=\frac{\epsilon _{0} K A}{2 d}+\frac{\epsilon _{0} K A}{8 d}$ $\begin{bmatrix} \text{Given :} & K_{1}=K \\ \text{and} & K_{2}=\frac{K}{4} \end{bmatrix}$
$=\frac{\left(\epsilon \right)_{0} K A}{d}\left(\frac{1}{2} + \frac{1}{8}\right)=\frac{\left(\epsilon \right)_{0} K A}{d}\left(\frac{4 + 1}{8}\right)$
$=\frac{5 \left(\epsilon \right)_{0} K A}{8 d}...\left(i\right)$
and $C_{2}=\frac{\epsilon _{0} A}{\frac{d}{2 K_{1}} + \frac{d}{2 K_{2}}}=\frac{\epsilon _{0} A}{\frac{d}{2 K} + \frac{d}{\frac{2 K}{4}}}$
$=\frac{\left(2 K\right) \left(\epsilon \right)_{0} A}{5 d}...\left(ii\right)$
Dividing eq. $\left(i\right)$ by eq. $\left(ii\right)$
$\frac{C_{1}}{C_{2}}=\frac{\frac{5 \epsilon _{0} K A}{8 d}}{\frac{2 K \epsilon _{0} A}{5 d}}=\frac{5 \times 5}{2 \times 8}=\frac{25}{16}$