Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Calculate the mean deviation about the median for the following data.
Height (in cm) 95-- 105 105- 115 115- 125 125- 135 135- 145 145- 155
Number of boys 9 13 25 30 13 10

Statistics

Solution:

First we find the median
Class Frequency $f_i$ Cumulative Frequency $(C)$ Midvalue $(x_i)$
95 - 105 9 9 100
105-115 13 22 110
115-125 25 47 120
125-135 30 77 130
135 - 145 13 90 140
145 -155 10 100 150
$N = \Sigma f_{i} = 100$

Thus $N = 100$ and therefore, $\frac{N}{2} = 50$
$\Rightarrow $ median class is $125 - 135$.
$\Rightarrow l = 125$, $f= 30$, $h= 10$ and $C = 47$
$\therefore $ Median $= l + \frac{\left(\frac{N}{2}-C\right)}{f}\times h$
$= \left\{125+\frac{\left(50-47\right)}{30}\times10\right\}=126$
$\therefore M= 126$.
Now, we prepare the table given below.
$f_i$ $x_i$ $|x_i-M|$ $f_i|x_i-M|$
9 100 26 234
13 110 16 208
25 120 6 15
30 130 4 120
13 140 14 182
10 150 24 240
N=100 1134

$\therefore M.D. \left(M\right) = \frac{\Sigma f_{i}\left|x_{i}-M\right|}{N}$
$=\frac{1134}{100} = 11.34$.