Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Calculate the mean deviation about the median for the following data.
Class 16- 20 21- 25 26- 30 31- 35 36- 40 41- 45 46- 50 51- 55
Frequency 5 6 12 14 26 12 16 9

Statistics

Solution:

Converting the given series into an exclusive series, we prepare the table given below.
Class Frequency $f_i$ $C$ Midvalue $(x_i)$
15.5-20.5 5 5 18
20.5-25.5 6 11 23
25.5-30.5 12 23 28
30.5-35.5 14 37 33
35.5-40.5 26 63 38
40.5-45.5 12 75 43
45.5-50.5 16 91 48
50.5-55.5 9 100 53
N = 100

Thus $N = 100$ and therefore, $\frac{N}{2} = 50$
$\Rightarrow $ median class is $35.5 - 40.5$
$\Rightarrow l = 35.5$, $f= 26$, $h= 5$ and $C = 37$
$\therefore $ Median $= l + \frac{\left(\frac{N}{2}-C\right)}{f}\times h$
$=\left\{35.5+\frac{\left(50-37\right)}{26}\times5\right\}$
$\left(35.5+2.5\right)=38$.
Thus, $M= 38$.
Now, we prepare the table given below.
$f_i$ $x_i$ $|x_i-M|$ $f_i|x_i-M|$
5 18 20 100
6 23 15 90
12 28 10 120
14 33 5 70
26 38 0 0
12 43 5 60
16 48 10 160
9 53 15 135
N=100 735

Thus, $\sum f_{i} \left|x_{i}-M\right| = 735$ and $N = 100$
$\therefore M.D. \left(M\right) = \frac{\sum f_{i}\left|x_{i}-M\right|}{N}$
$=\frac{735}{100} = 7.35$.
Hence, the mean deviation about the median is $7.35$.