Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Calculate the highest frequency of the emitted photon in the Paschen series of spectral lines of the hydrogen atom

AMUAMU 2012Atoms

Solution:

$\frac{1}{\lambda} = R \left[\frac{1}{\left(n_{1}\right)^{2}} - \frac{1}{\left(n_{2}\right)^{2}}\right] $
For Paschen series
$ \frac{1}{\lambda} = R \left[\frac{1}{\left(3\right)^{2}} - \frac{1}{\left(\infty\right)^{2}}\right]$
$ = R \left[\frac{1}{9} -0\right] = R \frac{1}{9} $
$\frac{1}{\lambda} = \frac{R}{9} $
$\lambda = \frac{9}{R}$
$\lambda = \frac{9}{1.09\times 10^{7}} $
$ = 8.25 \times 10^{-7} $
Frequency $n = \frac{c}{\lambda} $
$= \frac{3\times 10^{8}}{8.25 \times 10^{-7}} $
$ n = 3.7 \times 10^{14} Hz$