Thank you for reporting, we will resolve it shortly
Q.
Calculate the average total energy density of an electromagnetic wave coming from the sun that has the $RMS$ value of electric field as $720 \, N \, C^{- 1}$ .
NTA AbhyasNTA Abhyas 2022
Solution:
Total average energy density of electromagnetic wave is
$
\begin{array}{l}
U_{ av }=\frac{1}{2} \varepsilon_0 E_{ rms }^2+\frac{1}{2 \mu_0} B_{ rms }^2 \\
=\frac{1}{2} \varepsilon_0 E_{ rms }^2+\frac{1}{2 \mu_0}\left(\frac{E_{ rms }^2}{c^2}\right) \left(\because B_{ rms }=\frac{E_{ rms }}{c}\right) \\
=\frac{1}{2} \varepsilon_0 E_{ rms }^2+\frac{1}{2 \mu_0} E_{ rms }^2 \varepsilon_0 \mu_0 \left(\because c=\frac{1}{\sqrt{\mu_0 \varepsilon_0}}\right) \\
=\frac{1}{2} \varepsilon_0 E_{ rms }^2+\frac{1}{2} \varepsilon_0 E_{ rms }^2=\varepsilon_0 E_{ rms }^2 \left(\because 0^{-12} \times(720)^2=4.58 \times 10^{-6} J m \right. \\
=8.85 \times 10^{-3}
\end{array}
$