Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Calculate the average total energy density of an electromagnetic wave coming from the sun that has the $RMS$ value of electric field as $720 \, N \, C^{- 1}$ .

NTA AbhyasNTA Abhyas 2022

Solution:

Total average energy density of electromagnetic wave is
$ \begin{array}{l} U_{ av }=\frac{1}{2} \varepsilon_0 E_{ rms }^2+\frac{1}{2 \mu_0} B_{ rms }^2 \\ =\frac{1}{2} \varepsilon_0 E_{ rms }^2+\frac{1}{2 \mu_0}\left(\frac{E_{ rms }^2}{c^2}\right) \left(\because B_{ rms }=\frac{E_{ rms }}{c}\right) \\ =\frac{1}{2} \varepsilon_0 E_{ rms }^2+\frac{1}{2 \mu_0} E_{ rms }^2 \varepsilon_0 \mu_0 \left(\because c=\frac{1}{\sqrt{\mu_0 \varepsilon_0}}\right) \\ =\frac{1}{2} \varepsilon_0 E_{ rms }^2+\frac{1}{2} \varepsilon_0 E_{ rms }^2=\varepsilon_0 E_{ rms }^2 \left(\because 0^{-12} \times(720)^2=4.58 \times 10^{-6} J m \right. \\ =8.85 \times 10^{-3} \end{array} $