Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Calculate the angular frequency of the system shown in figure. Friction is absent everywhere and the threads, spring and pulleys are massless. Given that $m_A$ = $m_B$ = m.
Question

NTA AbhyasNTA Abhyas 2020Oscillations

Solution:

Let $x_{0}$ be the extension in the spring in equilibrium.
Then equilibrium of $A$ and $B$ give,
$T = kx _{0}+ mg \sin \theta \ldots$ (i)
and $2 T = mg \ldots$ (ii)
Here, $T$ is the tension in the string. Now, suppose $A$ is
further displaced by a distance $x$ from its mean position and $v$ be its speed at this moment.
Then $B$ lowers by $\frac{x}{2}$ and speed of $B$ at this instant will be $\frac{v}{2}$ Total energy of the system in this position will be,
$E =\frac{1}{2} k \left(x+ x_{0}\right)^{2}+\frac{1}{2}( m )_{ A }( v )^{2}+\frac{1}{2}( m )_{ B }\left(\frac{ v }{2}\right)^{2}$
$+( m )_{ A }( gh )_{ A }-( m )_{ B }( gh )_{ B }$
or $E =\frac{1}{2} k \left(x +x_{0}\right)^{2}+\frac{1}{2} m ( v )^{2}+\frac{1}{8}( mv )^{2}$
$+ mgx \sin\theta - mg \frac{x}{2}$
or $E =\frac{1}{2} k \left(x+ x_{0}\right)^{2}+\frac{5}{8} m ( v )^{2}+ mgx \sin \theta - mg \frac{x}{2}$
Since, $E$ is constant, $\frac{ dE }{ dt }=0$
or $0 = k \left(x+ x_{0}\right) \frac{ d x}{ dt }+\frac{5}{4} mv \left(\frac{ dv }{ dt }\right)+ mg (\sin\theta )\left(\frac{ d x}{ dt }\right)$
$-\frac{ mg }{2}\left(\frac{ d x}{ dt }\right)$
Substituting, $\frac{ d x}{ dt }= v$
$\frac{ dv }{ dt }=a$ and $k x_{2}+ mg \sin \theta =\frac{ mg }{2}$ [From equations (i) and (ii)]
We get,$\frac{5}{4} m a=- k x$
Since, $a \propto-x$
Motion is simple harmonic, time period of which is,
$T =2 \pi \sqrt{\left|\frac{x}{a}\right|}=2 \pi \sqrt{\frac{5 m }{4 k }}$
$\omega=\frac{2 \pi}{ T }=\sqrt{\frac{4 k }{5 m }}$