Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Calculate Henry's law constant for H2S, whose solubility in water at STP is assumed to be 0.195 m.

NTA AbhyasNTA Abhyas 2022

Solution:

(a) Calculation of mole fraction of H2S 0.195 m means that 0.195 mole of H2S dissolves in 1000 g of water.
Number of moles of water in 1000 g, $\left(\left(\text{n}\right)_{\left(\text{H}\right)_{2} \text{O}}\right)$
$=\frac{\left(\text{1000 g}\right)}{\left(1 8 \left(\text{g mol}\right)^{- 1}\right)}=\text{55.55}\text{mol}$
$\text{Mole fraction H}_{2} \text{S} = \frac{\text{n}_{\text{H}_{2} \text{S}}}{\text{n}_{\text{H}_{2} \text{S}} + \text{n}_{\text{H}_{2} \text{O}}}$
$= \frac{\left(0 \cdot 1 9 5 \text{mol}\right)}{\left(0 \cdot 1 9 5 + 5 5 \cdot 5 5\right) \text{mol}}$
$= \frac{\left(0 \cdot 1 9 5 \text{mol}\right)}{\left(5 5 \cdot 7 4 5 \text{mol}\right)} = 0 \cdot 0 0 3 5$
(b) Calculation of Henry's law constant
According to Henry's law
$\text{x}_{\text{H}_{2} \text{S}} = \frac{\text{Partial pressure of H}_{2} \text{S}}{\text{K}_{\text{H}} \text{for} \text{H}_{2} \text{S}} \text{at STP}$
$\text{K}_{\text{H}} \text{for H}_{2} \text{S} = \frac{\text{Partial pressure of H}_{2} \text{S}}{\text{x}_{\text{H}_{2} \text{S}}}$
$= \frac{\left(0 \cdot 9 8 7 \text{bar}\right)}{\left(0 \cdot 0 0 3 5\right)} = 2 8 2 \text{bar}$