Q. By Simpson rule taking $n=4$, the value of the integral $\int_{0}^{1} \frac{1}{1+x^{2}} d x$ is equal to
MHT CETMHT CET 2011
Solution:
Here, $h=1 / 4,=0.25, y=\frac{1}{1+x^{2}}$
x
y
1
0
1.0
2
0.25
0.941
3
0.5
0.8
4
0.75
0.64
5
1
0.5
By Simpson's Rule
$\int_\limits{0}^{1} \frac{d x}{1+x^{2}}=\frac{1}{4 \times 3}$
$[(1+0.5) + 4(0.941+ 0.64)+2(0.8)]$
$=\frac{1}{12}[9,424]=0.785$
x | y | |
1 | 0 | 1.0 |
2 | 0.25 | 0.941 |
3 | 0.5 | 0.8 |
4 | 0.75 | 0.64 |
5 | 1 | 0.5 |