Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
By Newton-Raphson method, the positive root of the equation x4-x-10=0 is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. By Newton-Raphson method, the positive root of the equation $x^{4}-x-10=0$ is
Manipal
Manipal 2020
A
1.871
B
1.868
C
1.856
D
None of these
Solution:
Given, $f(x)=x^{4}-x-10$
We assume $x_{0}=2$ is the approximate root of $f(x)$.
Then, $h=-\frac{f\left(x_{0}\right)}{f'\left(x_{0}\right)}=-\frac{f(2)}{f'(2)}$
$\Rightarrow h=-\left[\frac{(2)^{4}-2-10}{4(2)^{3}-1}\right]$
$\Rightarrow h=-\left[\frac{16-12}{31}\right]=\frac{-4}{31}$
$\Rightarrow h=-0.129$
$\therefore $ Positive square root of $f(x)$ by Newton-Raphson method,
$x_{1}=x_{0}+h=2+(-0.129)$
$=2-0.129=1.871$