Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. At what distance from the centre of the moon, the intensity of gravitational field will be zero? Take masses of earth and moon as $ 5.98\times {{10}^{2r}}kg $ and $ 7.35\times {{10}^{22}}kg $ respectively and distance between moon and earth is $ 3.85\times {{10}^{8}}m. $

VMMC MedicalVMMC Medical 2015

Solution:

Let x be the distance of the point from the centre of earth whose gravitational intensity is zero. Therefore, $ \frac{G{{M}_{e}}}{{{x}^{2}}}=\frac{GMm}{{{(3.85\times {{10}^{8}}-x)}^{2}}} $ $ \frac{x}{(3.85\times {{10}^{8}}-x)}=\sqrt{\frac{{{M}_{e}}}{{{M}_{m}}}}=\sqrt{\frac{5.98\times {{10}^{24}}}{7.35\times {{10}^{22}}}}=9 $ $ \frac{x}{9}+x=385\times {{10}^{8}} $ $ x=\frac{9\times 385\times {{10}^{8}}}{10} $ $ x=3.46\times {{10}^{8}}m $ Distance from moon $ =3.85\times {{10}^{8}}-3.46\times {{10}^{8}} $ $ =3.9\times {{10}^{7}}m $