Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. At STP, a container has 1 mole of Ar, 2 moles of $CO_{2}$ , 3 moles of $O_{2}$ and 4 moles of $N_{2}$ without changing the total pressure if one mole of $O_{2}$ is removed, the partial pressure of $O_{2}$

NTA AbhyasNTA Abhyas 2020States of Matter

Solution:

In the first case,

$n_{A r}=1,n_{C O_{2}}=2,n_{O_{2}}=3,n_{N_{A}}=4$

So total number of moles $=1+2+3+4=10$

If P in the total pressure, $P_{O_{2}}=\frac{3 P}{10}$

In the second case,

$n_{O_{2}}=2,n_{t o t a l}=9$

As P remains the same, $P_{O_{2}}=\frac{2 P}{9}$

So decrease in partial pressure of $O_{2}$

$=\frac{3 P}{10}-\frac{2 P}{9}=\frac{7 P}{90}$

So % decrease in partial pressure of $O_{2}$

$=\frac{\frac{7 P}{90}}{\frac{3 P}{10}}\times 100=\frac{700}{27}=26\%$