Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. At constant pressure, the ratio of increase in volume of an ideal gas per degree rise in kelvin temperature to its original volume is: (T = absolute temperature of the gas)

EAMCETEAMCET 2004Kinetic Theory

Solution:

According to the ideal gas law $ PV=RT $ or $ V=\left( \frac{R}{P} \right)T $ or $ V\propto T $ (at constant pressure) Hence, $ \frac{{{V}_{1}}}{{{V}_{2}}}=\frac{{{T}_{1}}}{{{T}_{2}}} $ or $ \frac{{{V}_{2}}}{{{V}_{1}}}=-\frac{{{T}_{2}}}{{{T}_{1}}} $ ?(i) (where $ {{V}_{2}} $ is the final volume) Now, the ratio of change in volume to the original volume From Eq. (i) $ \frac{{{V}_{2}}}{{{V}_{1}}}-1=\frac{{{T}_{2}}}{{{T}_{1}}}-1 $ $ \frac{{{V}_{2}}-{{V}_{1}}}{{{V}_{1}}}=\frac{{{T}_{2}}-{{T}_{1}}}{{{T}_{1}}} $ (given $ {{T}_{2}}-{{T}_{1}}=1K $ ) $ \frac{{{V}_{2}}-{{V}_{1}}}{{{V}_{1}}}=\frac{1}{{{T}_{1}}} $