Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Assuming the orbit of mars around the sun to be circular, the revolving red planet's angular momentum is proportional to the $n^{t h}$ power of its radius. Here $n$ is

NTA AbhyasNTA Abhyas 2022

Solution:

Solution
The C.P. force $\frac{m v^{2}}{R}$ is provided by the gravitational force $\frac{G M m}{R^{2}}$ .
$∴$ $\frac{m v^{2}}{R}=\frac{G M m}{R^{2}}$ $∴v=\sqrt{\frac{G M}{R}}$
But the angular momentum $L=Ιω=mR^{2}\times \frac{v}{R}=mvR$
$∴$ $L=mR\sqrt{\frac{G M}{R}}=m\sqrt{G M}\times \frac{R}{\sqrt{R}}$ $=m\sqrt{G M}⋅R^{\frac{1}{2}}=KR^{\frac{1}{2}}$
$∴$ $L∝R^{\frac{1}{2}}$ as $K=m\sqrt{G M}$ is a constant.
But $L∝R^{n}$ $∴$ $n=\frac{1}{2}$