Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Assume that each atom of copper contributes one free electron. What is the average drift velocity of conduction electrons in a copper wire of cross-sectional area $10^{-7} m ^{2}$, carrying a current of $1.5 A$ ? (given, density of copper $=9 \times 10^{3} kgm ^{-3}$; atomic mass of copper $=63.5$; Avogadro's number $=6.023 \times 10^{23}$ per gram atom)

Current Electricity

Solution:

Here, density of copper $(\rho)=9 \times 10^{3} kgm ^{-3}$,
Avogadro's number $(N)=6.023 \times 10^{23}$.
Atomic mass of copper $(m)=63.5 g =63.5 \times 10^{-3} kg$
Number of free electrons per unit volume,
$n=\frac{N}{m} \rho=\frac{6.023 \times 10^{23}}{63.5 \times 10^{-3}} \times 9 \times 10^{3}$
Drift velocity i.e.,
$v_{d} =\frac{i}{n A e}=\frac{1.5 \times 63.5 \times 10^{-3}}{6.023 \times 10^{23} \times 9 \times 10^{3} \times 10^{-7} \times 1.6 \times 10^{-19}}$
$=1.1 \times 10^{-3} ms ^{-1}$