Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Assertion: The value of $\sin \left[\tan ^{-1}(-\sqrt{3})+\cos ^{-1}\left(-\frac{\sqrt{3}}{2}\right)\right]$ is $1$
Reason: $\tan ^{-1}(-x)=\tan x$ and $\cos ^{-1}(-x)=\cos ^{-1} x$

Inverse Trigonometric Functions

Solution:

$\sin \left[\tan ^{-1}(-\sqrt{3})+\cos ^{-1}\left(\frac{-\sqrt{3}}{2}\right)\right]$
$=\sin \left[-\tan ^{-1} \sqrt{3}+\pi-\cos ^{-1} \frac{\sqrt{3}}{2}\right]$
$=\sin \left[-\frac{\pi}{3}+\pi-\frac{\pi}{6}\right]=\sin \frac{\pi}{2}=1$
Hence, Assertion is correct but Reason is incorrect.