Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Assertion: $\displaystyle \lim _{x \rightarrow 0}(1+3 x)^{1 / x}=e^{3}$.
Reason: Since $\displaystyle \lim _{x \rightarrow 0}(1+x)^{1 / x}=e$.

Limits and Derivatives

Solution:

$\displaystyle \lim _{x \rightarrow 0}(1+3 x)^{1 / x}=\displaystyle \lim _{x \rightarrow 0}\left[\left(1+3 x^{1 / 3 x}\right)\right]^{3}=e^{3}$
because $\displaystyle \lim _{x \rightarrow 0}(1+x)^{1 / x}=e$