Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Assertion Balmer series lies in the visible region of electromagnetic spectrum.
Reason $\frac {1}{\lambda}=R \bigg [\frac {1}{2^2}- \frac {1}{n^2} \bigg ],$ where $ n=3,4,5 $

Atoms

Solution:

The wavelength in Balmer series is given by
$ \frac {1}{\lambda}=R \bigg [\frac {1}{2^2}- \frac {1}{n^2} \bigg ], \, n=3,4,5,.... $
$ \frac {1}{\lambda_{max}}=R\bigg [\frac {1}{2^2}- \frac {1}{3^2} \bigg ] $
$ \frac {1}{\lambda_{max}}=\frac {36}{5R}= \frac {36}{5 \times 1.097 \times 10^7}=6563 \mathring {A} $
and $ \frac {1}{\lambda_{min}}=R \bigg [\frac {1}{2^2}- \frac {1}{\infin^2}\bigg ]$
$ \lambda_{min}= \frac {4}{R}= \frac {4}{1.097 \times 10^7}=3646 \mathring {A} $
The wavelength $6563 \, \mathring {A} \, and \, 3646 \, \mathring {A}$ lie in visible region.
Therefore, Balmer series lies in visible region.