Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Assertion (A) : $sin^{-1} (sin \,5) = 5$ (where $5$ is in radians)
Reason (R) : $sin^{-1}(sin\, \theta) = 0$ for principal value.

Inverse Trigonometric Functions

Solution:

$sin\,5 = sin(\pi + \overline{5-\pi})$
$ = -sin(5 - \pi), 5 - \pi \notin [-\frac{\pi}{2}, \frac{\pi}{2}] = -sin(\pi + \overline{5 - 2\pi})$
$= sin (5 - 2\pi)$, where $5 - 2\pi \in[\frac{\pi}{2}, \frac{\pi}{2}]$
$\therefore sin^{-1} (sin\,5) = sin^{-1} sin(5 - 2\pi)$
$\Rightarrow sin^{-1} (sin \,5) = 5 - 2 \,\pi \ne 5$
$\therefore $ Assertion (A) is false but given
Reason (R) is true.