Q.
Assertion (A) : If $z = \sqrt{3 + 4i} + \sqrt{-3 + 4i}$ then principal argument of $z$ i. e., $Arg (z)$ are $ \pm \frac{\pi}{4}, \pm \frac{3\pi}{4}$ where $\sqrt{-1} = i$.
Reason (R) : If $z = A + iB$, then
$\sqrt{z} =
\begin{cases}
\sqrt{\frac{|z| + Re(z)}{2}} + i \sqrt{\frac{|z| - Re(z)}{2}} & \text{if $ B > 0$} \\[2ex]
\sqrt{\frac{|z| + Re(z)}{2}} + i \sqrt{\frac{|z| - Re(z)}{2}} & \text{if $ B < 0$}
\end{cases}$
Complex Numbers and Quadratic Equations
Solution: